Topics

Material covered in class lectures 8/21 to 9/15. This corresponds to Sections 1.1-1.8, 1.10, 2.1-2.2 in Goodman.

- 1. Know basic definitions: Group, subgroup, homorphism, isomorphism of groups, subgroup generated by a set, cyclic group, order of an element, Euler's φ -function, gcd, congruence class.
- 2. Important examples: $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n, (\mathbb{Z}/n\mathbb{Z})^{\times} = \mathbb{Z}_n^{\times}, \mathbb{R}, \mathbb{C}, \mathbb{R} \setminus \{0\}, \mathbb{C} \setminus \{0\}, M_n(\mathbb{R}), GL_n(\mathbb{R}), O_n(\mathbb{R}), S_n$.
- 3. Compute in \mathbb{Z}_n : find orders of elements, determine subgroup lattices.
- 4. Compute in \mathbb{Z}_n^{\times} : determine its elements, find inverses.
- 5. Compute with permuations: cycle decompositon.
- 6. Arithmetic of integers: divisibility properties, primes, gcd.
- 7. Modular arithmetic: addition, multiplications, zero divisors, multiplicative inverses of congruence classes.
- 8. Polynomial division, irreducibility.

Practice problems

Review homework problems. Here are a few further practice problems. **Question 1** Is (\mathbb{Z}_5, \cdot) a group? What about $(\mathbb{Z}_5^{\times}, \cdot)$? What about $(\mathbb{Z}_5^{\times}, +)$?

Question 2 If *p* is a prime, how many elements does \mathbb{Z}_p^{\times} have?

Question 3 Suppose that $\varphi(n) = n - 1$. Must *n* be prime?

Question 4 If $\phi : G \to H$ is an isomorphism of groups, is the inverse function $\phi^{-1} : H \to G$ also an isomorphism of groups?

Question 5 If *X* is a set and $Y \subseteq X$ is a subset, show that $\{\sigma \in \text{Sym}(X) \mid \sigma \mid_Y = id_Y\}$ is a subgroup of Sym(X) and is isomorphic to Sym(X - Y).

Question 6 Give an example of a subgroup $H \leq O_2(\mathbb{R})$ such that *H* is isomorphic to \mathbb{Z}_4 .

Question 7 Is there an element of order 4 in \mathbb{Z}_{27} ? Is there an element of order 9?

Question 8 Give an example of two groups of order 6 which are not isomorphic.

Question 9 If $H_1, H_2 \leq G$ are subgroups, show that $H_1 \cap H_2$ is also a subgroup.

Question 10 Is \mathbb{Z}_5^{\times} cyclic? Is \mathbb{Z}_9^{\times} cyclic?

Question 11 Write the permutation (123)(145) as a product of disjoint cycles.

Question 12 For each of the following, determine if the polynomial p(x) is irreducible over \mathbb{Q} , \mathbb{R} or \mathbb{C} .

- 1. $p(x) = x^2 2$.
- 2. $p(x) = x^2 4$.
- 3. $p(x) = x^2 + 1$.